Golgi, trafficking, and mitosis dysfunctions in pulmonary arterial endothelial cells exposed to monocrotaline pyrrole and NO scavenging.

نویسندگان

  • Jason Lee
  • Reuben Reich
  • Fang Xu
  • Pravin B Sehgal
چکیده

Although the administration of monocrotaline (MCT) into experimental animals is in widespread use today in investigations of pulmonary arterial hypertension (PAH), the underlying cellular and subcellular mechanisms that culminate in vascular remodeling are incompletely understood. Bovine pulmonary arterial endothelial cells (PAECs) in culture exposed to monocrotaline pyrrole (MCTP) develop "megalocytosis" 18-24 h later characterized by enlarged hyperploid cells with enlarged Golgi, mislocalization of endothelial nitric oxide synthase away from the plasma membrane, decreased cell-surface/caveolar nitric oxide (NO), and hypo-S-nitrosylation of caveolin-1, clathrin heavy chain, and N-ethylmaleimide-sensitive factor. We investigated whether MCTP did in fact affect functional intracellular trafficking. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) and the NO donor diethylamine NONOate were used for comparison. Both MCTP and c-PTIO produced distinctive four- to fivefold enlarged PAECs within 24-48 h with markedly enlarged/dispersed Golgi, as visualized by immunostaining for the Golgi tethers/matrix proteins giantin, GM130, and p115. Live-cell uptake of the Golgi marker C(5) ceramide revealed a compact juxtanuclear Golgi in untreated PAECs, brightly labeled enlarged circumnuclear Golgi after MCTP, but minimally labeled Golgi elements after c-PTIO. These Golgi changes were reduced by NONOate. After an initial inhibition during the first day, both MCTP and c-PTIO markedly enhanced anterograde secretion of soluble cargo (exogenous vector-expressed recombinant horseradish peroxidase) over the next 4 days. Live-cell internalization assays using fluorescently tagged ligands showed that both MCTP and c-PTIO inhibited the retrograde uptake of acetylated low-density lipoprotein, transferrin, and cholera toxin B. Moreover, MCTP, and to a variable extent c-PTIO, reduced the cell-surface density of all receptors assayed (LDLR, TfnR, BMPR, Tie-2, and PECAM-1/CD31). In an important distinction, c-PTIO enhanced mitosis in PAECs but MCTP inhibited mitosis, even that due to c-PTIO, despite markedly exaggerated Golgi dispersal. Taken together, these data define a broad-spectrum Golgi and subcellular trafficking dysfunction syndrome in endothelial cells exposed to MCTP or NO scavenging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein trafficking dysfunctions: Role in the pathogenesis of pulmonary arterial hypertension

Earlier electron microscopic data had shown that a hallmark of the vascular remodeling in pulmonary arterial hypertension (PAH) in man and experimental models includes enlarged vacuolated endothelial and smooth muscle cells with increased endoplasmic reticulum and Golgi stacks in pulmonary arterial lesions. In cell culture and in vivo experiments in the monocrotaline model, we observed disrupti...

متن کامل

Monocrotaline pyrrole-induced endothelial cell megalocytosis involves a Golgi blockade mechanism.

Pyrrolizidine alkaloids initiate disease in the lung (pulmonary hypertension), liver (veno-occlusive disease and cirrhosis), and kidneys (afferent arteriolar block and mesangiolysis) by inducing a megalocytotic phenotype in target endothelial and parenchymal cells. A "hit-and-run" type of exposure to the bioactive pyrrolizidine results, within 2-3 days, in enlarged cells with large nuclei and e...

متن کامل

Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension.

Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial end...

متن کامل

Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging.

We previously reported the disruption of caveolae/rafts, dysfunction of Golgi tethers, N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor proteins (SNAREs), and SNAPs, and inhibition of anterograde trafficking in endothelial cells in culture and rat lung exposed to monocrotaline pyrrole (MCTP) as a prelude to the development of pulmonary hypertension. We have now investigated ...

متن کامل

Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole.

Investigations of regulated S-nitrosylation and denitrosylation of vasorelevant proteins are a newly emergent area in vascular biology. We previously showed that monocrotaline pyrrole (MCTP)-induced megalocytosis of pulmonary arterial endothelial cells (PAECs), which underlies the development of pulmonary arterial hypertension, was associated with a Golgi blockade characterized by the trapping ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 297 4  شماره 

صفحات  -

تاریخ انتشار 2009